# MULTIPLICATIVE CYCLIC CONTRACTION MAPPINGS CLASS AND BEST PROXIMITY POINT THEOREMS

A.U Terrang, S.A. Akinwunmi, D.O. Oyewola, & M.M. Bitrus

Abstract

Let A and B be non-empty subset of a multiplicative metric space (𝑋, 𝑑) and 𝑇: 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 be a multiplicative R-cyclic contraction with respect to 𝛹. Then there exists a sequence {𝑥𝑛}𝑛∈ℕ ⊂ 𝐴 ∪ 𝐵 such that lim𝑛→∞ 𝑑(𝑥𝑛, 𝑥𝑛+1) = 𝑖𝑛𝑓𝑛∈ℕ𝑑(𝑥𝑛, 𝑥𝑛+1 ) = 𝑑(𝐴, 𝐵), then lim𝑛→∞ 𝑑(𝑥𝑛, 𝑥𝑛+1) = 𝑖𝑛𝑓𝑛∈ℕ𝑑(𝑥𝑛, 𝑥𝑛+1 ) = 𝑑𝑖𝑠𝑡(𝐴, 𝐵). The current article provides solutions to numerous problems in Physics, Optimization and Economics, which can be reduced to finding a common best proximity point of some non-linear operator. We considered the application of cyclic contraction mapping on the multiplicative metric space then we obtain lim𝑛→∞ 𝑑(𝑥𝑛, 𝑥𝑛+1) = 𝑖𝑛𝑓𝑛∈ℕ 𝑑(𝑥𝑛, 𝑥𝑛+1 ) = 𝑑𝑖𝑠𝑡(𝐴, 𝐵), 𝑑(𝐴, 𝐵) ≤ 𝑑(𝑣, 𝑇𝑣) ≤ 𝑑(𝐴, 𝐵), 𝑑(𝑣, 𝑇𝑣) = 𝑑(𝐴, 𝐵), 𝑑(𝑇𝑥, 𝑇𝑦) ≤ (𝑑(𝑥, 𝑦)) 𝛹(𝑑(𝑥,𝑦)) ∙ 𝑑(𝐴, 𝐵) 1−𝛹(𝑑(𝑥,𝑦)) ≤ (max {𝑑(𝑥, 𝑦),[𝑑(𝑇𝑥, 𝑥) ∙ 𝑑(𝑇𝑦, 𝑦) ∙ min {𝑑(𝑥, 𝑇𝑦), 𝑑(𝑦, 𝑇𝑥)}] 1 2) 𝜑(𝑑(𝑥,𝑦)) ∙ 𝑑(𝐴, 𝐵) 1−𝜑(𝑑(𝑥,𝑦)) for all 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵. Read full PDF

Keywords: Contraction mapping, Collapse, Height, Waist, 2010 Mathematics Subject Classification: 16W2, 10X2, 06F05 and 09F06

References

 Eldred, A.A. and Veeramani, P. (2006). Existence and Convergence of Best Proximity Points. Mathematical Analysis and Application, 323: pp1001-1006.

 Bashirov, A.E., Karplnara, E. M., and Ozyaplcl, A.O. (2008). Multiplicative Calculus and its Application. Journal of Mathematical Analysis and Applications, 337:36-48. A.U Terrang et al. / Journal of Science and Technology Research 2(1) 2020 pp. 150-161 161

 Ozavsar, M. and Cervikel, A. C. (2012). Fixed Point of Multiplicative Contraction Mappings on Multiplicative Metric Spaces. arXiv:1205.513lvl[math.GM].

 Sarwar, M. and Rome, B. (2014). Some Unique Fixed-Point Theorems in Multiplicative Metric Space. arXiv:1410.3384v2[math.GM].

 Abbas, M., Ali, B., and Suleiman, Y.I (2015). Common Fixed Points of Locally Contractive Mappings in Multiplicative Metric Space with application. International Journal of Mathematical Science, 2015(Article ID 218683, Doi:10.1155/2015/218683):7 pages.

 Du, W. and Lakzian, H. (2012). Nonlinear Conditions for the Existence of Best Proximity Points. Journal of Inequality and Applications,vol. 206:pp. 1-7.

 Niyom, S., Boriwan, P., and Petrot, N. (2015). Best Proximity Point Theorem on a Class of Generalized Cyclic Contraction Mapping. Journal of inequalities and Applications, vol. 166:pp. 1-3.

 Kirchhoff, D.G. and Kellog (1922). Invariant Points in Function Spaces. Trans of American Mathematical Society, 23:pp96-115.

 Hxiaoju, H., Song, M., and Chen, D. (2014). Common Fixed Points for Weak Commutative Mappings on a Multiplicative Metric Space. Fixed point theory and application, vol. 48:pp. 2-9.

 Bashirov, A.E., Misirli, E., Tandogdu, Y., and Ozyaplcl, A. (2011). On Modeling with Multiplicative Differential Equations. Applied Mathematics, 26: pp 425-438.

 Florack, L. and Assen, H.V. (2012). Multiplicative Calculus in Biomedical Image Analysis. Journal of Mathematical Imaging and Vision, 42(1): pp64-75.

 Fan, K. (1969). Extension of Two Fixed Points Theorems of F.E. Browder. Mathematische Zeitsch, 112(3):pp234-240.

 Singxi, S. L., Tiwari, B. M. L., and Gupta, V. K. (1980). Common Fixed Points of Commuting Mappings in 2-Metric Spaces and an Application. Mathematical Nachr, (96):pp293-297.

 Sastry, K.P.R., Naidu, G. A., Sharma, K. K. M., and Gayatri, I. L. (2010). Common Fixed Point for Compatible Mappings on 2-Metric Spaces. Global Journal of Mathematical Science; Theory and practical, 2(3): pp173-179.

 Gu, F., Cui, L.M., and Wu, Y.H. (2003). Some Fixed-Point Theorems for New Contractive Type Mappings. Journal of Qiqihar University, 19: pp85-89.

 Mustafa, Z. and Sims, B. (2004). Some Remarks Concerning d-Metric Spaces. In proceedings of international conference on fixed point theory and application, pages 13-19. Yakohan publishers Valencia spain.

 Agarwal, R.P., El-Gebily, M.A., and Oregan, D. (2008). Generalized Contractions in Partially Ordered Metric Spaces. Applied Analysis, 87:109-116.

 Suzuki, T. (2008). A Generalized Banach Contraction Principle that Characterized Metric Completeness. Proceedings of the American Mathematical Society, 136(5): pp.18611869.

 Lin, L.-J., Lakzian, H., and Chou, Y. (2012). On Best Proximity Point Theorems for New Cyclic Maps. International Mathematical Forum, 7(37): pp1839-1849.